Ruled Laguerre minimal surfaces

نویسندگان

  • Mikhail Skopenkov
  • Helmut Pottmann
  • Philipp Grohs
چکیده

A Laguerre minimal surface is an immersed surface in R being an extremal of the functional ∫ (H/K− 1)dA. In the present paper, we prove that any ruled Laguerre minimal surface distinct from a plane is up to motion a convolution of the helicoid x = y tan z, the cycloid r(t) = (t− sin t, 1−cos t, 0) and the Plücker conoid (ax+ by) = z(x+y) for some a, b ∈ R. To achieve invariance under Laguerre transformations, we also derive all Laguerre minimal surfaces that are enveloped by a family of cones. The methodology is based on the isotropic model of Laguerre geometry. In this model a Laguerre minimal surface enveloped by a family of cones corresponds to a biharmonic function carrying a family of isotropic circles. We classify such functions by showing that the top view of the family of circles is a pencil. A main tool in our analysis is a new symmetry principle for biharmonic functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laguerre Minimal Surfaces

Laguerreminimal (L-minimal) surfaces are theminimizers of the energy ∫ (H2 −K)/KdA. They are a Laguerre geometric counterpart of Willmore surfaces, the minimizers of ∫ (H2 − K)dA, which are known to be an entity of Möbius sphere geometry. The present paper provides a new and simple approach to L-minimal surfaces by showing that they appear as graphs of biharmonic functions in the isotropic mode...

متن کامل

A Laguerre geometric approach to rational offsets

Laguerre geometry provides a simple approach to the design of rational curves and surfaces with rational offsets. These so-called PH curves and PN surfaces can be constructed from arbitrary rational curves or surfaces with help of a geometric transformation which describes a change between two models of Laguerre geometry. Closely related to that is their optical interpretation as anticaustics o...

متن کامل

Ruled minimal surfaces in R with density e

We classify ruled minimal surfaces in R3 with density ez. It is showed that there is no noncylindrical ruled minimal surface and there is a family of cylindrical ruled minimal surfaces in R3 with density ez. It is also proved that all translation minimal surfaces are ruled. AMS Subject Classification (2000): Primary 53C25; Secondary 53A10; 49Q05

متن کامل

Laguerre Geometry of Hypersurfaces in Rn

Laguerre geometry of surfaces in R is given in the book of Blaschke [1], and have been studied by E.Musso and L.Nicolodi [5], [6], [7], B. Palmer [8] and other authors. In this paper we study Laguerre differential geometry of hypersurfaces in Rn. For any umbilical free hypersurface x : M → Rn with non-zero principal curvatures we define a Laguerre invariant metric g on M and a Laguerre invarian...

متن کامل

Characterizations of Slant Ruled Surfaces in the Euclidean 3-space

In this study, we give the relationships between the conical curvatures of ruled surfaces generated by the unit vectors of the ruling, central normal and central tangent of a ruled surface in the Euclidean 3-space E^3. We obtain differential equations characterizing slant ruled surfaces and if the reference ruled surface is a slant ruled surface, we give the conditions for the surfaces generate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010